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Intent inference involves the analysis of actions and activities of a

target of interest to deduce its purpose. This paper proposes an ap-

proach for intent inference based on aircraft flight profile analysis.

Simulation tests are carried out on flight profiles generated using

different combinations of flight parameters. In each simulation test,

Interacting Multiple Model-based state estimation is carried out to

update the state vectors of the aircraft being monitored. Relevant

variables of the filtered flight trajectory are subsequently used as

inputs for a Mamdani-type fuzzy inference system. Research on two

applications is reported. The first application involves the determi-

nation of the likelihood of weapon delivery by an attack aircraft

under military surveillance. Test results verify that the method is

feasible and is able to provide timely inference. By extending the

method to take the environmental context of the tracked aircraft

into consideration when executing the inference process, it is likely

that the military defenders would be able to raise their alert earlier

against potential adversaries. This would provide them with more

time to react and devise pre-emptive counteraction. The second ap-

plication concerns conformance monitoring in air traffic control sys-

tems. Experimental results show that the proposed solution can be

used to assist air traffic control system operators in determining if

aircraft navigate according to planned trajectories. Consequently,

corrective action can be taken on detection of anomalous behavior.

A brief discussion on extending the proposed method to deal with

multiple aircraft is also presented.
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1. INTRODUCTION

The human brain has remarkable capabilities in per-
ception and reasoning. However, the amount of com-
plex data/information that can be processed by the hu-
man brain is constrained by the limited memory capac-
ity. Hence, computational tools are necessary to provide
cognitive aid to the human brain in attaining better per-
formance in intellectual tasks, such as decision making.
Intent inference is about analyzing the actions and

activities of an opponent or a target of interest to ob-
tain a conclusion (prediction) on its purpose [3, 10,
18, 24]. Generally, data (collectively called observables)
concerning the opponent are first collected from avail-
able sources. Next, the data are fused to obtain useful
information. Finally, the fused information is utilized to
derive the inferred intent of the opponent. It is desirable
that intent inference be able to provide three kinds of
hypotheses about an opponent’s objective [3, 18]:

² Descriptive intent inference–provides insight into
the motivations behind preceding actions;

² Predictive intent inference–anticipates theopponent’s
future actions given his deduced goals;

² Diagnostic intent inference–detects differences be-
tween predicted and observed actions to reveal pos-
sible errors.

Accurate prediction of an opponent’s intention, ac-
tions and reactions would be useful for the purpose of
devising effective responses to his actions, as well as
planning for one’s own operations.
Intent inference has been used in applications such

as intelligent transportation systems (infer and detect a
driver’s intent [36]) and air traffic management (ATM)
(predict the future trajectory of an air vehicle and the
states of nearby aircraft [20, 42]). Other applications
include the medical domain, recommender systems, tu-
toring systems and team intent identification [18].
In this paper, we report our research on two ap-

plications of intent inference [9, 25]. The first task is
to determine the intent of the pilot (equivalently, the
flight mission) of an aircraft being tracked by a military
surveillance system [25]. The second involves confor-
mance monitoring in air traffic control (ATC) systems
[31].
This paper is organized as follows. Section 2 pro-

vides a general discussion on intent inference and a brief
review on related work from the research literature. Sec-
tion 3 describes our proposed fuzzy logic approach for
intent inference based on the analysis of flight profiles
for attack aircraft. In addition, the environmental context
of the tracked aircraft is taken into consideration during
the execution of the inference process. The impact of
this additional factor on the inference outcome is inves-
tigated. Four different test scenarios are used to eval-
uate the feasibility of the proposed method. Section 4
is focussed on conformance monitoring in ATC/ATM
systems. Section 5 presents simulation tests and results.
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Fig. 1. The OODA Loop.

Section 6 gives a discussion on handling an approach
by multiple aircraft. Section 7 provides a summary on
this paper.

2. INTENT INFERENCE

The Boyd Control Loop (also called Boyd’s Decision
Loop or the Observe, Orient, Decide, and Act (OODA)
Loop) [11, 27] is a popular model that has been used for
formalizing concepts of tactical command and decision
making. It describes human and organizational behavior
as a continuous, iterative and cyclic process of Obser-
vation (represents event perception), Orientation (cor-
responds to the process of memory and cognition, the
activity that provides environmental context and indi-
vidual expectations), Decision (describes the process of
cognitive comparison) and Action (equals the resulting
behavior). In particular, the function Orientation shapes
the way the other functions, Observation, Decision and
Action, are done.
The emphasis of this model is placed on shortening

the cycle to perform the Observe to Act loop (see
Fig. 1):

² Observe–gather data from the environment via hu-
man and related senses,

² Orient–gain situation awareness and perform situa-
tion and impact/threat assessment based on the infor-
mation derived from the data obtained,

² Decide–respond to situation and work out follow-up
actions,

² Act–execute the planned response,
to the extent that the opponent cannot respond in time to
carry out countermeasures, thus gaining superiority in
the engagement. The OODA Loop can also be applied
to computer-assisted cognition.
An intent inference system provides reasoning about

the opponent’s intent, mission objective, or motivation.
By nature of the inference mechanism, the intent in-
ference system will also be able to provide prediction
on the opponent’s possible future actions or activity ac-
cording to the inferred intent. Thus, it serves as useful
decision support to the decision maker. In this way, the
inference system not only contributes to better situation
awareness and aids in resolving ambiguity that arises
from multi-source fusion, but further assists the deci-

sion maker in his cognitive task and helps in shortening
the decision making process.
Intent inference is a relatively young and challeng-

ing research area as compared to the maturing lower
level data fusion. Emerging interest in the application
of this research area can be found in the military arena
[3, 37] and antiterrorism [12, 16]. Generally, intent
and activity inference requires a cognitive architecture
with knowledge-based modeling. Inputs to the infer-
ence system are information gathered through intelli-
gent autonomous agents or provided by multiple sens-
ing sources, including reports from human intelligence.
Through modeling, the structure and pattern of oppo-
nent entities, as well as their behavior and relationships,
are captured. The focus of the inference mechanism is
on contextual and relational reasoning as opposed to
single entity reasoning at lower level fusion processes.
The inference mechanism may be based on a rule-based
system or a more dynamic reasoning system such as
Bayesian networks. In this paper, a fuzzy inference sys-
tem (FIS), also known as a fuzzy-rule-based system, is
used.

2.1. Related Research Work

A method for pilot intent inference in real-time
was investigated in [19]. It was based on plausible
models of intent and a process for identifying models
that matched observed aircraft motion best. The models
were ranked based on their correlation with measured
aircraft motion. The highest ranked plausible models of
intent made up the best estimate of the aircraft intent.
Sequences of actions were executed to infer guidance
and navigation task intents of the tracked aircraft. The
inferred intent was then used as a basis for trajectory
prediction.
The authors of [41] proposed an intent-based tra-

jectory prediction algorithm to carry out maneuvering
aircraft tracking, aircraft intent inference and trajectory
prediction. A hybrid estimation algorithm was used for
estimating the states and flight mode of the aircraft. In-
tent inference was posed as a maximum likelihood prob-
lem. Pilot intent inference was obtained via the combi-
nation of the state and flight mode estimates, air traffic
control regulations, the flight plan of the aircraft and
environment information. The inferred intent and the
aircraft motion (state and flight mode estimates) were
used for the computation of trajectory prediction. The
proposed algorithm was tested and analyzed through
simulations in different scenarios representative of air-
craft operations.
In [1], a hybrid system model of intent inference

was constructed for air traffic controllers. An algorithm
based on the Interacting Multiple Model (IMM) Kalman
filter (the State Dependent Transition Hybrid Estima-
tion algorithm) was implemented for state estimation,
as well as the generation of residuals (discrepancies)
between the observed aircraft states and the expected
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aircraft states. The residual mean was generated based
on probabilistic methods. The proposed model was ap-
plied to an example problem on conformance monitor-
ing. A statistical test was carried out on the residual
means for both the conformance monitoring model and
the actual aircraft system to obtain a conclusion/decision
on conformance or non-conformance.
Conformance monitoring in air traffic control is a

relatively new application of intent inference. Some re-
search work based on fault detection has been done
in this area [30—35] and will be discussed in Sec-
tion 4.

2.2. Inference Mechanism

Classification is the process of inferring the con-
cept behind an available collection of observations. This
task covers any context in which some decision or
forecast is made based on available information. It in-
volves the establishment of a mapping from a mea-
surement (an observation) space to a decision space.
Input measurement/observation data is assigned into
one or more predetermined classes based on the selec-
tion/extraction, as well as the processing or analysis, of
significant features or attributes. Some commonly used
approaches to classification are briefly discussed below
[17].

2.2.1. Statistical Approach
Statistical (or decision theoretic) classifiers are gen-

erally characterized as having an explicit underlying
probabilistic model. In a parametric classification pro-
cedure, a set of characteristic measurements (features)
are extracted from the input data, and are used to assign
each feature vector to one of the predetermined classes.
Features are assumed to be generated by a state of na-
ture, the underlying model represents a state of nature,
set of probabilities, or probability density functions, that
are conditional on the classes.
There are cases when there is insufficient prior in-

formation available, or when it is not necessary, to make
assumptions about the distribution associated with the
feature vector in the different classes. Under such cir-
cumstances, it is possible to use non-parametric estima-
tion of the pdf involved to build distribution-free meth-
ods of classification (that is, non-parametric classifiers).
Statistical classifiers generally work reasonably well

for problems in which structures are not deemed signif-
icant.

2.2.2. Neural Network Approach
A neural network assumes that a set of input data

and their correct classifications are given. The architec-
ture of a neural net includes layers of interconnected
nodes. It is characterized by a set of weights and ac-
tivation functions which determine the transmission of
information from the input layer to the output layer. The
training data is used to train the neural network and

adjust the weights until the correct classifications are
obtained. The complete network generally represents a
complex set of interdependencies, which may incorpo-
rate an arbitrary degree of nonlinearity.
Neural networks are suitable for solving problems

with a large amount of features and classes. They can be
applied to problems that involve generalization, parallel
processing, or discrimination among classes with highly
nonlinear boundaries.

2.2.3. Fuzzy Logic Approach
Classification is often done with some degree of un-

certainty. In problems with data that are noisy and dis-
torted, complications can arise and lead to ambiguous
situations in which classified data may belong in some
degree to more than one class, or the classification out-
come itself may be in doubt. Fuzzy logic (or fuzzy set
theory) can be introduced to deal with such problems.
In fuzzy classification, an input data entity is assigned
a membership value in the interval [0,1] in each prede-
termined class.

2.3. Proposed Approach

We propose that intent inference be carried out via a
fuzzy logic approach (conceptual information on fuzzy
logic used in this paper [15, 38, 39] is given in the
Appendix). The main reasons that motivate the use of
the proposed approach are as follows.
Firstly, compared to statistical and probabilistic

methods used in most related research work, fuzzy logic
techniques are particularly suitable for modeling prob-
lems with inherent imprecision properties [11, 23]. The
problems to be discussed in this paper involve observa-
tion/information associated with human cognitive pro-
cesses such as thinking and reasoning, in which uncer-
tainties and imprecision are usually inherent. Therefore,
it is appropriate to use fuzzy logic to deal with these
problems.
Secondly, fuzzy logic techniques are useful for the

fusion of information from multiple input sources and
the application of heuristics to determine the overall
status of the inputs [7]. Hence, for each problem in
this paper, the information obtained from tracking the
subject aircraft can be fused to determine the pilot
intent, which is required by the surveillance/monitoring
system users concerned for decision making.
Thirdly, implementation of fuzzy logic is simple,

fast and efficient [21, 38]. This would be useful for
problems in which computational load/time is a critical
factor, such as the two problems of interest here. For
the first task on air defense, it is essential to take pre-
emptive action against potential adversaries as quickly
as possible, in order to avert possible attacks. For the
second problem on conformance monitoring in air traf-
fic control systems, it is important to minimize the de-
lay in correcting any deviant aircraft behavior that is
detected.
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Fig. 2. Flight profile for offset pop-up delivery.

A fuzzy inference system is a computing framework
based on the concepts of fuzzy set theory, fuzzy rules
and fuzzy reasoning (an inference procedure which de-
rives conclusions from a set of fuzzy rules and available
information) [15]. The basic structure of a fuzzy infer-
ence system comprises three conceptual components:

² rule base–contains a selection of fuzzy rules,
² database–defines the membership functions used in
the fuzzy rules,

² reasoning mechanism–performs the inference pro-
cedure upon the rules and known facts to derive a
reasonable output or conclusion.

The inference mechanism used in this paper is based on
the widely accepted Mamdani’s fuzzy inference method
[15], which was one of the first control systems built
using fuzzy set theory. It was proposed as an attempt
to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained
from experienced human operators.
The Mamdani-type FIS used here is generated using

the MATLAB Fuzzy Logic Toolbox [38, 39]. The fuzzy
inference process has five parts, namely, fuzzification
of the input variables, application of the fuzzy operator
in the antecedent, implication from the antecedent to
the consequent, aggregation of the consequents across
the rules, and defuzzification. Details on each part of
the fuzzy inference process implemented for the two
applications discussed in this paper are provided in
Sections 3 and 4.

3. WEAPON DELIVERY BY ATTACK AIRCRAFT

Effective intent inference will greatly enhance the
defense capability of a military force in taking pre-
emptive action against potential adversaries. It serves as
a form of advance warning in the prevention of a crisis
(for instance, enemy attack) or facilitates the moderation

of the impact of such a crisis. For an air defense system,
the ability to accurately infer the likelihood of a weapon
delivery by an attack aircraft is critical.
The type of weapon delivery for attack aircraft con-

sidered in this paper is offset pop-up delivery. The defi-
nitions for some terms pertaining to this form of weapon
delivery are stated below. Section 3.1 provides a brief
description of offset pop-up delivery [40].

² Pop Point (PUP)–a position at which the pop-up
attack is initiated, the point where climb is initiated.

² Pull-Down Point (PDP)–a maneuver point where
one transitions from the climbing to the diving portion
of a pop-up delivery.

² Apex–the highest altitude in the pop-up delivery
profile.

² Track Point (TP)–the starting point of tracking prior
to arriving at planned release altitude.

² Release Point (RP)–the point at which weapon is
released.

A tracked aircraft is considered to have constant
speed, with the velocity components in the horizon-
tal plane (parallel to ground) and the vertical axis
(parallel to altitude) varying in different phases of
the trajectory. In this application, altitude, distance
and velocity are measured in feet above ground level
(AGL), feet and knots respectively, unless otherwise
stated.

3.1. Typical Offset Pop-up

The pop-up approach heading, as shown in Fig. 2
[8], is at an angle (varies with the planned climb angle)
from 15± to 90± from the final attack heading. This
allows the pilot to acquire the target as soon as possible
and maintain visual contact until weapon delivery is
completed.
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Fig. 3. Overview of proposed system.

The pilot initiates the pop-up over a preplanned pop
point at a minimum airspeed of 450 knots calibrated
airspeed (KCAS). He selects his desired power, makes
a 3—4 G wings-level pull to the desired climb angle and
initiates a chaff/flare program. After popping, he has
to maintain the planned climb angle and monitor the
altitude gained.
When approaching the preplanned pull-down alti-

tude, the pilot makes an unloaded1 roll in the direc-
tion of the target. He then performs a 3—5 G pull-down
to intercept the planned dive angle. Interception of the
planned dive angle while pointed at the aim-off point is
a critical factor in attaining preplanned delivery param-
eters. It is usually acceptable to have minor deviations
in the attack heading.
During the maneuver, corrections are made to com-

pensate for minor errors in the pop point or unexpected
winds in the climb to the apex at the planned altitude.
The planned apex altitude is normally achieved about
half way through the pull-down maneuver.
For safety reasons, a pilot would most probably

abort a pop-up attack immediately if at least one of the
following conditions arises:

² the actual dive angle exceeds the planned one by more
than 5±,

1In aeronautics, the lift on an aircraft is the component of total air
force acting on the aircraft which is perpendicular to the direction of
flight and is normally executed in an upward direction. The load factor
is the ratio of the lift on an aircraft to the weight of the aircraft, which
is expressed in multiples of G, with 1 G representing conditions in
straight and level flight.
Unloaded: the situation in which the load factor is 0 G, where every

occupant of an aircraft experiences a feeling of weightlessness.

² the airspeed goes below 350 KCAS (300 KCAS
above 10000 feet AGL).

The occurrence of such conditions would result in in-
accuracy in the impact point of the released weapon.

3.2. Process and Techniques

Our proposed procedure for inferring the possibility
of weapon delivery by a tracked attack aircraft, based
on flight profiles, is given below.

Procedure 1

1. For an aircraft being tracked, record its state informa-
tion (sensor measurement data) through observation.

2. Apply the IMM algorithm [22, 24] to update the
track state estimates.

3. For each track state estimate, use the position com-
ponents to identify the environmental context and
hence the corresponding location sensitivity index
(LSI) (details in Sections 3.2.1 and 5.1).

4. Fuzzy inference process
a. Input

i. relevant parameters of the filtered flight trajec-
tory, and

ii. LSI obtained in Step 3,
to a Mamdani-type fuzzy inference system gener
ated using the MATLAB Fuzzy Logic Toolbox
[38, 39].

b. Output produced by the FIS is the inferred possi-
bility of weapon delivery by the tracked aircraft.
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Fig. 4. Fuzzy inference system.

An overview of the system for the proposed ap-
proach is shown in Fig. 3. The entire fuzzy inference
process is shown in Fig. 4. The following subsections
provide details on the fuzzy inference process.

3.2.1. Fuzzification of the Input Variables
In the first step, each input variable is a crisp/non-

fuzzy numerical value within its universe of discourse
and is assigned a linguistic value in the interval [0,1] via
a membership function. The input variables considered
in the current application are obtained from kinematic
parameters of the filtered flight trajectory. Elaboration
on each of the input variables, with respect to the tracked
aircraft, is given below.
The first variable is the velocity along the ver-

tical axis (abbreviated vz). It is classified as either
positive (denoted by “> 0”) or negative (denoted by
“< 0”), indicating either upward or downward mo-
tion respectively. The second variable is the magni-
tude of vz (abbreviated vzmag). The third variable
is the altitude. The fourth variable is an indicator
for the occurrence of a change in heading (measured
in radians, abbreviated dhdg) during the time inter-
val between consecutive scans. A change in head-
ing is considered to have occurred when the differ-
ence in heading between two consecutive records along
the filtered flight trajectory exceeds a chosen thresh-
old value (¼=180 radians in the current application).
The fifth variable is an indicator for the likelihood
of a weapon delivery (abbreviated delivery) by the

TABLE I
Symbols used for Membership Functions

Symbol VL L M H VH

Linguistic value Very Low Low Medium High Very High

tracked aircraft. A weapon delivery is considered un-
likely when at least one of the following conditions
occurs:

² the actual dive angle exceeds the planned one by more
than 5±,

² the airspeed goes below 350 KCAS (300 KCAS
above 10000 feet AGL).

The sixth variable is an index representation of the
environmental context of the tracked aircraft, named
location sensitivity index (abbreviated LSI). The LSI
is based on the degree of sensitivity of the spatial
domain in which the tracked aircraft is traveling. High
LSI corresponds to highly sensitive locations, including
vicinities of critical infrastructure such as government
establishments. Low LSI corresponds to locations with
low sensitivity, including regions that are remote or not
habitable.
Figs. 5 to 10 show the membership functions for

the six input variables. Table I shows the symbols and
their corresponding linguistic values for membership
functions (where applicable).
The number of levels for the linguistic values for

membership functions can vary according to the amount
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Fig. 5. Membership functions of “vz.”

Fig. 6. Membership functions of “vzmag.”

of information available. Labels that are more de-
scriptive can be used for various levels of linguis-
tic values of a variable. An example is to use words
such as fast, slow and constant when labeling dif-
ferent degrees of membership for variables related to
velocity/speed.

3.2.2. Application of Fuzzy Operators
After fuzzification of the inputs, the degree to which

each part of the antecedent is satisfied for each rule is
known. When an antecedent of a given rule has multiple

parts, a fuzzy operator (such as those defined in the
Appendix) has to be applied to the multiple membership
values from fuzzified input variables, in order to obtain
one single truth value. This output value (which lies in
[0,1]) represents the result of that antecedent for that
rule and will be applied to the output function.

3.2.3. Application of Implication Method
For each rule, apply a weight (1 is used in this paper)

to the single truth value given by the antecedent. Then
implement the implication on this weighted value using

APPLICATION OF INTENT INFERENCE FOR AIR DEFENSE AND CONFORMANCE MONITORING 9



Fig. 7. Membership functions of “altitude.”

Fig. 8. Membership function of “dhdg.”

the built-in AND method: min (minimum) function [38,
39]. The implication process yields an output fuzzy set
(assigned by the consequent) which is truncated to the
level of the weighted truth value of the antecedent. The
rules used in the current application are listed in Table II.
They are based on the expected characteristics of the
motion along an offset pop-up delivery profile.
Fig. 11 shows the membership functions for the

output variable (inferred possibility of weapon delivery
by the tracked attack aircraft, abbreviated pos). The

complexity of the rules can be modified according to
the amount of information available.

3.2.4. Aggregation of All Outputs
It is necessary to determine an approach to combine

the rules in a fuzzy inference system in order to reach
a decision/conclusion. The output fuzzy sets of each
rule (obtained via the preceding implication method)
are unified to form a single output fuzzy set, whose
membership function assigns a weighting for every
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Fig. 9. Membership function of “delivery.”

Fig. 10. Membership functions of “LSI.”

output value. The aggregation process inputs are the
truncated output membership functions returned by the
preceding implication process for each rule. The output
of the aggregation process is one fuzzy set for each
output variable. This paper utilizes the built-in OR
method: max (maximum) function [38, 39] for the
aggregation process. Therefore, the final membership
function value is given by the maximum value among
the consequent membership function values for each of
the rules in the fuzzy inference system.

3.2.5. Defuzzification
In the last step of the fuzzy inference process, let F

denote the output fuzzy set of the preceding aggregation
process and Z denote the universe of discourse that F
is in. Let ¹F(¢) be the aggregated output membership
function representing F. Defuzzification of F yields the
output of the fuzzy inference system, which is a single
crisp/non-fuzzy number [15]. The built-in method of
centroid calculation [38, 39] is used in this paper. The
defuzzified output, zCOA, is the center of area under
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TABLE II
Rules for Fuzzy Inference System (Weapon Delivery by Attack Aircraft)

R1. (altitude is VL) ! (pos is VL).
R2. (vz > 0) & (dhdg is NOT occurred) & (LSI is VL) ! (pos is L).
R3. (vz > 0) & (dhdg is NOT occurred) & (LSI is L) ! (pos is L).
R4. (vz > 0) & (dhdg is NOT occurred) & (LSI is M) ! (pos is M).
R5. (vz > 0) & (dhdg is NOT occurred) & (LSI is H) ! (pos is M).
R6. (vz > 0) & (dhdg is NOT occurred) & (LSI is VH) ! (pos is H).
R7. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is VL) ! (pos is L).
R8. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is L) ! (pos is M).
R9. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is M) ! (pos is M).
R10. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is H) ! (pos is H).
R11. (vz > 0) & (vzmag is L) & (dhdg is occurred) & (LSI is VH) ! (pos is H).
R12. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is VL) ! (pos is M).
R13. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is L) ! (pos is M).
R14. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is M) ! (pos is H).
R15. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is H) ! (pos is H).
R16. (vz > 0) & (vzmag is VL) & (dhdg is occurred) & (LSI is VH) ! (pos is VH).
R17. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is VL) ! (pos is M).
R18. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is L) ! (pos is H).
R19. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is M) ! (pos is H).
R20. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is H) ! (pos is VH).
R21. (vz < 0) & (altitude is NOT VL) & (delivery is NOT unlikely) & (LSI is VH) ! (pos is VH).
R22. (vz < 0) & (delivery is unlikely) & (LSI is VL) ! (pos is L).
R23. (vz < 0) & (delivery is unlikely) & (LSI is L) ! (pos is M).
R24. (vz < 0) & (delivery is unlikely) & (LSI is M) ! (pos is M).
R25. (vz < 0) & (delivery is unlikely) & (LSI is H) ! (pos is H).
R26. (vz < 0) & (delivery is unlikely) & (LSI is VH) ! (pos is H).

¹F(¢), defined by

zCOA =

Z
Z

¹F(z)z dzZ
Z

¹F(z)dz
:

4. CONFORMANCE MONITORING

In conventional air traffic control and air traffic
management operations, the controller creates a visu-
alization of the current and future state dynamics of
all aircraft under his control. For each individual air-
craft, the controller determines if its observed behav-
ior conforms to the expected or planned path [30, 35].
Unintentional deviations can result from noise in the
surveillance systems, atmospheric effects and dynam-
ics of the aircraft navigation systems. Such deviations
can be used as threshold values in the definition of a
“conformance region.” An observed flight profile that
lies within the region would be considered conforming,
while one that lies beyond the region would be con-
sidered non-conforming. In the latter case, knowledge
of the conformance status provides a basis for the air
traffic controller to implement rectifying measures for
the aircraft concerned.
In [31], an analysis framework was developed for

the purpose of investigating issues pertaining to con-
formance monitoring in ATC/ATM. The conformance
monitoring task was put forward as a fault detection
problem. Fault detection and isolation techniques were
used to determine if observable aircraft states were con-

sistent with behavior that was normal (that is, conform-
ing) or abnormal (that is, non-conforming). In other
words, non-conforming behavior of an aircraft was re-
garded as a “fault” to be detected in the ATC/ATM sys-
tem. The proposed framework comprised the following
components:

² conformance basis– basis from which expected state
behaviors of an aircraft are generated and against
which observed behaviors of the subject aircraft are
compared;

² actual system representation– key elements that ex-
ecute instructions that form the communicated con-
formance basis;

² conformance monitoring model– generates expected
state behaviors against which observed state behav-
iors are to be compared (requires appropriate level of
fidelity to carry out effective conformance monitor-
ing);

² conformance monitoring functions– determine at
any time if observed state behaviors are consistent
with expected state behaviors that are output by the
conformance monitoring model.

The framework was implemented for several confor-
mance monitoring tasks in air traffic control [32—34].
Enhancement and/or improvement of techniques for

conformance monitoring is of much interest because of
its importance in proper operation of ATC/ATM sys-
tems. In addition, there is much awareness of poten-
tial hazards to the air transport system posed by non-
conforming aircraft that deviate from expected traffic
patterns.
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Fig. 11. Membership functions of “pos.”

In order to maintain the safety, security and effi-
ciency of ATC/ATM systems, timely detection of non-
conforming behavior in aircraft is essential. Our objec-
tive in this application is to use a fuzzy inference ap-
proach to determine if a tracked aircraft is navigating
within conformance limits.

4.1. Process and Techniques

The proposed procedure (a slight modification of
Procedure 1 in Section 3.2) for inferring the possibility
of non-conformance in the behavior of a tracked aircraft
is stated below.

Procedure 2

1. For an aircraft under surveillance, record its state in-
formation (sensor measurement data) through obser-
vation.

2. Apply the IMM algorithm [22, 24] to update the
track state estimates.

3. Fuzzy inference process
a. Input relevant parameters of the filtered flight
trajectory to a Mamdani-type fuzzy inference sys-
tem generated using the MATLAB Fuzzy Logic
Toolbox [38, 39].

b. Output produced by the FIS is the inferred pos-
sibility of non-conformance in the behavior of the
tracked aircraft.

The system diagram for the proposed approach is
identical to that shown in Fig. 3, omitting the consider-
ation of environmental context. Fig. 4 shows the fuzzy
inference process, with input and output variables re-
placed by those described in Section 4.1.1.

4.1.1. Fuzzy Inference Process
Firstly, fuzzification of the input variables is as de-

scribed in Section 3.2.1. The input variables considered
in the current application are obtained from kinematic
parameters of the filtered flight trajectory. Each of the
input variables, with respect to the tracked aircraft, is
defined below.
The first variable is the deviation of the estimated

position from the planned position (measured in feet,
abbreviated dp). The second variable is the deviation of
the estimated velocity from the planned velocity (mea-
sured in feet per second, abbreviated dv). The third
variable is the deviation of the estimated heading from
the planned heading (measured in radians, abbreviated
dh). Figs. 12 to 14 show the membership functions for
the three input variables. The symbols and their corre-
sponding linguistic values for membership functions are
shown in Table I (where applicable).
Next, rule evaluation (application of the fuzzy oper-

ator in the antecedent, followed by implication from the
antecedent to the consequent) is carried out as stated in
Sections 3.2.2 and 3.2.3. The rules used in the current
application are listed in Table III. They are based on pre-
determined threshold values for state deviations in the
definition of a “conformance region.” Fig. 15 shows the
membership functions for the output variable (inferred
possibility of non-conformance in the behavior of the
tracked aircraft, abbreviated pnc).
As mentioned in Sections 3.2.4 and 3.2.5, the out-

put fuzzy sets (assigned by the consequents) of each
rule are aggregated to form a single output fuzzy set.
Defuzzification of this final output fuzzy set yields the
output of the fuzzy inference system, which is a single
crisp/non-fuzzy number.
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Fig. 12. Membership functions of “dp.”

Fig. 13. Membership functions of “dv.”

5. SIMULATION TESTS AND RESULTS

We carry out simulation tests to verify the plausibil-
ity of the proposed approach. The state estimation com-
ponent of the method is as follows. Consider a three-
dimensional kinetic model described by the discrete-
time dynamic system

Xk+1 = f(Xk,wk) (1)

and the measurement/observation equation

Zk+1 = h(Xk+1,vk+1): (2)

At time step k, the state vector is Xk = [xk,yk,zk, _xk,
_yk, _zk]

T. The process noise vector wk is assumed to be
white Gaussian with covariance matrix Q. The measure-
ment vector is Zk and the measurement noise vector vk
is assumed to be white Gaussian with covariance matrix
R. Scalar matrices are used for Q and R. The sampling
interval is T = 1 (second).
The IMM algorithm used in this section comprises

a constant velocity model and two coordinated turn
models (one left-turn and one right-turn). The transi-
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Fig. 14. Membership functions of “dh.”

Fig. 15. Membership functions of “pnc.”

tion probability matrix and the initial mode probability
are
2
64
0:9 0:05 0:05

0:1 0:8 0:1

0:1 0:1 0:8

3
75 and [0:9 0:05 0:05]

respectively. The choices made for the transition prob-
ability matrix values [2, 29] are based on the following
reasons. The frequency of mode switches for a tracked

target is expected to be low, compared to that of it stay-
ing in the same mode (that is, remaining in the same
type of motion). The probability of a switch from the
current mode to another is expected to be the same for
each of the remaining modes. The expected sojourn time
of the system in the constant velocity mode is likely to
be higher than in the other modes. In addition, the two
coordinated turn models only differ in their turning di-
rections, so the transition probabilities for them are set
in the same way.
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TABLE III
Rules for Fuzzy Inference System

(Conformance Monitoring)

R1. (dp is L) & (dv is L) & (dh is L) ! (pnc is L)
R2. (dp is L) & (dv is L) & (dh is M) ! (pnc is M)
R3. (dp is L) & (dv is L) & (dh is H) ! (pnc is M)
R4. (dp is L) & (dv is M) & (dh is L) ! (pnc is M)
R5. (dp is L) & (dv is M) & (dh is M) ! (pnc is M)
R6. (dp is L) & (dv is M) & (dh is H) ! (pnc is H)
R7. (dp is L) & (dv is H) & (dh is L) ! (pnc is M)
R8. (dp is L) & (dv is H) & (dh is M) ! (pnc is H)
R9. (dp is L) & (dv is H) & (dh is H) ! (pnc is VH)
R10. (dp is M) & (dv is L) & (dh is L) ! (pnc is M)
R11. (dp is M) & (dv is L) & (dh is M) ! (pnc is M)
R12. (dp is M) & (dv is L) & (dh is H) ! (pnc is H)
R13. (dp is M) & (dv is M) & (dh is L) ! (pnc is M)
R14. (dp is M) & (dv is M) & (dh is M) ! (pnc is H)
R15. (dp is M) & (dv is M) & (dh is H) ! (pnc is VH)
R16. (dp is M) & (dv is H) & (dh is L) ! (pnc is M)
R17. (dp is M) & (dv is H) & (dh is M) ! (pnc is H)
R18. (dp is M) & (dv is H) & (dh is H) ! (pnc is VH)
R19. (dp is H) & (dv is L) & (dh is L) ! (pnc is M)
R20. (dp is H) & (dv is L) & (dh is M) ! (pnc is H)
R21. (dp is H) & (dv is L) & (dh is H) ! (pnc is VH)
R22. (dp is H) & (dv is M) & (dh is L) ! (pnc is M)
R23. (dp is H) & (dv is M) & (dh is M) ! (pnc is H)
R24. (dp is H) & (dv is M) & (dh is H) ! (pnc is VH)
R25. (dp is H) & (dv is H) & (dh is L) ! (pnc is H)
R26. (dp is H) & (dv is H) & (dh is M) ! (pnc is VH)
R27. (dp is H) & (dv is H) & (dh is H) ! (pnc is VH)

5.1. Weapon Delivery by Attack Aircraft

We use the simulation results for the following test
examples to evaluate the effectiveness of the proposed
method.

EXAMPLE 1. Aircraft in surveillance region of low to
high LSI.

We use computation formulas in [40] to determine pop-
up delivery parameters. Simulation is carried out on 100
different flight trajectories which are generated using
various pop-up delivery parameter values.
For each test, as described in Procedure 1 (see

Section 3.2), the IMM algorithm is applied to update
the state vectors obtained from each flight trajectory.
In the filter used, the discrete-time dynamic system of
each model is of the form represented by Equations 1
and 2. Next, for each state estimate, determine the
environmental context and the corresponding location
sensitivity index.
Let A denote the xy-plane (horizontal plane) por-

tion of the entire surveillance region, with the naviga-
tion convention (azimuth = 0 along the positive y-axis).
Consider the partition

A=
2[
i=1

8[
j=1

Aij

where
A1j is the jth octant with x

2 + y2 < B22 , j = 1, : : : ,8,
A2j is the jth octant with B

2
2 · x2 + y2 < B21 ,

Fig. 16. Partition of surveillance region (xy-plane).

j = 1, : : : ,8, and bounds B1 and B2 are given positive
constants.
The environmental contexts of the partition subsets

of A are predetermined and can vary. Let M be a given
matrix corresponding to the partition of A, where the
LSI for each partition subset Aij is M(i,j), i= 1,2,
j = 1, : : : ,8. Fig. 16 shows the layout for A, with each
partition subset denoted according to its subscript by
(i,j), i= 1,2, j = 1, : : : ,8. For each state estimate Xk of
the flight trajectory obtained from the filtering process,
use the position components xk and yk to identify the
partition subset, Ai(k),j(k), that Xk is in and the corre-
sponding LSI, M(i(k),j(k)). The relevant parameters of
the flight trajectory obtained from the filtering process
and the LSI obtained for the track state estimates are
input to a Mamdani-type fuzzy inference system gener-
ated using the MATLAB Fuzzy Logic Toolbox [38, 39].
The output produced by the fuzzy inference system is
the inferred possibility of the tracked aircraft carrying
out a weapon delivery. In this application, we propose
to classify a tracked aircraft as having adversarial intent
when the fuzzy inference system output exceeds 0.85.
Fig. 17 shows typical results obtained at different

phases of the filtered flight trajectory (lower graph), in
a scenario where the tracked aircraft travels from re-
gions of low to high sensitivity (and LSI). In the up-
per graph, the solid curve shows the FIS output values
(denoted by P henceforth, in this and subsequent test
examples) obtained with only the flight profile consid-
ered during simulation. The dash-dot curve shows the
FIS output values (denoted by P 0 henceforth, in this and
subsequent test examples) obtained via simulation with
both the flight profile and the environmental context of
the tracked aircraft considered. Table IV shows P and
P 0 corresponding to the five specific points (defined in
Section 3) on the filtered flight trajectory.
It can be observed that P increases as time passes

during the tracking process. The surge in P at scan 19
is triggered by motion that is characterized/interpreted
by the FIS as the onset of transition from the climb-
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Fig. 17. Example 1–Fuzzy inference system output.

TABLE IV
Example 1–Fuzzy Inference System Output

(to 3 decimal places)

Position on
Flight Profile PUP PDP Apex TP RP

Without LSI 0.105 0.350 0.728 0.816 0.832
With LSI 0.105 0.329 0.838 0.839 0.848

ing to the diving portion of a pop-up delivery. Thus,
the FIS returns a significant increase in P, for warning
purposes. P attains its peak around (and beyond) the
apex. P remains high in the later part of the tracking
process. This observation provides verification for the
feasibility of our proposed approach for adversarial in-
tent inference, based on the assumption that the aircraft
is approaching its weapon release point.
In regions of low (respectively, high) sensitivity,

low (respectively, high) corresponding LSI brings about
P 0 < P (respectively, P 0 > P). In the latter situation,
the higher P 0 is likely to be useful in raising military
defenders’ alert against a potential adversary.
It appears from the simulation results that a tracked

aircraft is very likely to carry out a weapon delivery
when P (or P 0) exceeds 0.85. It is probably appropri-
ate for military defenders to raise the level of vigilance
when P (or P 0) exceeds 0.7. This would allow them to
have more time to devise and take pre-emptive action
against the potential adversary. Fig. 17 shows that P 0

exceeds 0.7 earlier than P. This provides justification
that taking into consideration the environmental context
of the tracked aircraft is useful for improving the effi-
ciency of our approach for adversarial intent inference.

EXAMPLE 2. Aircraft in surveillance region of low
LSI.

This example is analogous to Example 1, with the entire
surveillance region being of low LSI. Typical simulation
results obtained are shown in Fig. 18.
The shapes of the plotted curves are similar to the

corresponding ones in Fig. 17. During the early stages
of tracking, P and P 0 are low and almost identical.
As in Example 1, there is a surge in P at scan 21,
which is triggered by motion that is interpreted by the
FIS as the onset of transition from climbing to diving
portion of a pop-up delivery. Towards the later part of
the tracking process, P exceeds 0.7, which is reasonably
high. On the other hand, P 0 < P and remains below 0.6,
which is moderate. In addition, P does not exceed 0.75,
which is below the proposed threshold value of 0.85 for
classifying an aircraft as having adversarial intent.
Compared to Example 1, there appears to be less

critical need/urgency in taking action against the tracked
aircraft. This is due to the low sensitivity in the surveil-
lance region, which leads to relatively lower P 0 values
when corresponding P values become high. However, it
would probably be advisable for the defenders to main-
tain their vigilance against such an aircraft, whose flight
profile closely resembles that of a pop-up delivery.

EXAMPLE 3. Aircraft cruising at high altitude.

We consider an aircraft that cruises at high altitude
throughout the approach. Two possible scenarios are
described as follows.

EXAMPLE 3a. Aircraft cruising in surveillance region
of low to high LSI.
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Fig. 18. Example 2–Fuzzy inference system output.

Fig. 19. Example 3a–Fuzzy inference system output.

It can be observed from Fig. 19 that a relatively high
value of P > 0:7 is reached during tracking. However,
there is no further flight motion that indicates an im-
pending attack, which would have caused an increase
in P. In this situation, P 0 > P, with P 0 2 (0:8,0:85) at-
tained. In view of the high values for P and P 0, it is
very likely for the defenders to be on high alert against
possible attack by the aircraft.

EXAMPLE 3b. Aircraft cruising in surveillance region
of low LSI.

This example is analogous to Example 3a, with the en-
tire surveillance region being of low LSI. It is appar-
ent from Fig. 20 that the values of P obtained are al-
most identical to those obtained in Example 3a. Due
to the low LSI of the surveillance region, P 0 remains
at a lower level of about 0.5 throughout the approach.
It appears from the simulation results that there is no
immediate need to raise the defenders’ alert against the
aircraft.

EXAMPLE 4. Aircraft unlikely to launch an attack.
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Fig. 20. Example 3b–Fuzzy inference system output.

Fig. 21. Example 4–Fuzzy inference system output.

Fig. 21 shows an instance of results obtained for the
simulated flight trajectory of an aircraft which is un-
likely to carry out a weapon delivery, such as one that
is performing aerobatics. It can be seen that P, as well as
P 0, is always below the proposed threshold value of 0.85
for classifying an aircraft as having adversarial intent.

5.2. Conformance Monitoring

Consider the planned flight trajectory shown in
Fig. 22. Simulation tests are carried out on 100 flight

profiles generated using different combinations of flight
parameters (based on existing computation formulas
and constraints). For each test, Procedure 2 (see Sec-
tion 4.1) is carried out to obtain the inferred pos-
sibility of non-conformance in the behavior of the
tracked aircraft. We categorize aircraft behavior into
three types, namely, conforming, non-conforming and
ambiguous [31], in our discussion. Fig. 23 depicts typi-
cal simulation results obtained.
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Fig. 22. Planned flight trajectory.

For the conforming case, FIS output values (de-
noted by P00 henceforth) remain consistently moder-
ate throughout the tracking process. The correspond-
ing deviations from planed states (namely, position, ve-
locity and heading) are relatively small. For the non-
conforming case, P 00 rises rapidly after an initial period
of low to moderate values during tracking. The surge
in P 00 is due to significant increases in state deviations.
The third type of aircraft behavior is considered am-
biguous due to indefiniteness in the behavioral traits
represented by P 00. In this case, there exist instances
when P 00 increases to become sufficiently large to indi-

cate non-conformance, where corresponding state devi-
ations manifest aberrant behavior in aircraft maneuver.
However, P 00 subsequently decreases to the extent that
conformance is signified, where corresponding state de-
viations provide evidence of a shift towards the right
direction of travel.
It appears from the simulation results that aircraft

behavior can be deemed non-conforming when P 00 >
0:85. It is suggested that alert against non-conformance
should be raised when P00 > 0:7. This would enable
ATC/ATM system controllers to provide the pilot with
early warning against navigating beyond safety limits.
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Fig. 23. Fuzzy inference system output (conformance monitoring).

Consequently, the pilot would likely be able to execute
necessary maneuvers to steer back towards the planned
trajectory with less delay.

6. APPROACH BY MORE THAN ONE AIRCRAFT

Our proposed method deals with intent inference for
a single aircraft. The problem on handling an approach
by multiple aircraft in military surveillance and air
traffic control/management would be more complex
and would require much additional consideration. Some
issues associated with this problem are discussed below.

6.1. Flight Formation

The flight approach can be in individual form or in
a formation. Some examples of flight formations em-

ployed by tactical combat aircraft are briefly described
in this section [40].

6.1.1. Two-ship Formation
In a line abreast formation, the position of the wing-

man2 relative to the flight leader is 0± to 20± aft, 4000 to
12000 feet spacing with altitude separation. A vertical
stack of 2000 to 6000 feet is used, when applicable, to
minimize the chance of simultaneous detection by an
opponent.
For a fighting wing formation, the wingman is given

a maneuvering cone from 30± to 70± aft of line abreast
and lateral spacing between 500 and 3000 feet. This

2Wingman: in a formation of aircraft, the pilot who flies behind and
to the side of the leader.
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formation is employed when maximum maneuvering
potential is desired.

6.1.2. Four-ship Formation
The four-ship formation is employed under the con-

trol of one flight leader. It is employed as a single entity
as long as it is not forced to separate into a lead element
(flight leader and his wingman) and a second/trailing
element (second leader and his wingman).
In a box formation, the two-ship elements use ba-

sic line abreast maneuvering and principles concern-
ing lookout responsibilities. Depending on terrain and
weather, the trailing element takes 1.5 to 3 nautical miles
separation from the lead element. The spacing serves the
purpose of maximizing separation to avoid easy visual
detection of the entire flight formation. maneuvers are
initiated by the element leaders in this formation.
For a fluid four formation, the element leaders main-

tain line abreast formation, while their wingmen assume
fighting wing. The flight leader is at the front of the for-
mation, with his wingman to his rear left. The second
leader is to the rear right of the flight leader, while his
wingman assume fighting wing. The assembly of four
of these formations forms a squadron formation.
In a spread four formation, the element leaders main-

tain the same spacing as for the fluid four formation.
The wingmen position themselves 0± to 30± to the rear
of their respective element leaders at 6000 to 9000 feet
spread. The increase in lateral spacing for wingmen fa-
cilitates maneuvering. The elements need not always be
line abreast. There may be instances when are briefly
in trail. Spread formation makes it difficult to visually
acquire the entire flight formation.
A three-ship contingency formation can be consid-

ered as an alternative for a four-ship formation mission
in some occasions. It is obtained from the four-ship for-
mation concerned by having an appropriate flight mem-
ber fall out from the original formation.

6.1.3. Echelon Formation
The flight members are arranged diagonally in an

echelon formation. Each member is positioned to the
rear right, or to the rear left, of the member ahead. These
two types of formations are known as a right echelon
and a left echelon respectively.

6.2. Multiple Target Tracking and Identity
Management

The problem of dealing with approach by more
than one aircraft requires the employment of multiple
target tracking techniques [4—6, 13, 14, 26, 28] for
the state estimation component of our proposed intent
inference method. For each tracked aircraft, information
based on the estimated kinematic states need to be taken
into consideration for processing by a fuzzy inference
system, in order to derive the pilot intent.

As mentioned before, the amount of computational
load/time is a critical factor for the two intent inference
problems discussed here. Hence, it is desirable to select
multiple target tracking algorithms with modest time
complexities.
Another point of concern is the detection and identi-

fication of the targets under surveillance. It may be dif-
ficult to distinguish the targets from one another during
tracking when there is close proximity and/or interac-
tion among them, such as in the case of a tactical aircraft
formation.
To address the aforementioned issues, the multiple-

target tracking and identity management (MTIM) al-
gorithm developed in [14] could be considered. The
MTIM algorithm is constituted of the following com-
ponents:

² data association–uses a computationally efficient al-
gorithm based on the joint probabilistic data associ-
ation algorithm [24], in which measurement data is
associated with targets via the use of target kinematic
information (position and velocity);

² tracking/hybrid state estimation–uses residual-mean
IMM algorithm based on multiple aircraft dynamics
models; and

² identity management–uses an algorithm with the
ability to keep track of target identities via the use
of local attribute information about them (either ex-
plicitly available from sensors or inferred from a tech-
nique based on the multiple hypothesis tracking algo-
rithm [24]).

The applicability of the MTIM algorithm for incorpo-
ration into the intent inference method proposed in this
paper could be investigated as part of our future re-
search.

7. SUMMARY

In this paper, we have presented an approach for
intent inference, which concerns the use of available
knowledge on the preceding activities of a target of
interest to predict its future action. The approach is
based on the analysis of aircraft flight profiles. The
method is implemented for two applications.
Firstly, it has been shown that it is possible to in-

fer the intent of an attack aircraft, particularly on its
weapon delivery. The proposed approach is extended
to consider the environmental context of the tracked
aircraft when executing the inference process. Simula-
tion is carried out on four test examples with different
scenarios to evaluate the performance of the method.
The results verify the feasibility of the method and its
ability to provide timely inference. It is also justifiable
to consider the environmental context, which is useful
in raising military defenders’ level of vigilance early
against potential adversaries, hence allowing more time
to prepare for pre-emptive action.
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In the second application, experimental results show
that the proposed solution has much potential in being a
useful tool for conformance monitoring in ATC/ATM.
It can be used to assist ATC/ATM system controllers
in determining whether aircraft are deviating from or
adhering to designated courses of travel. As a result,
corrective/remedial actions can be taken once deviant
behavior is detected.
Our proposed intent inference method has only con-

sidered an approach by a single aircraft. We briefly dis-
cuss the extension of the proposed method to deal with
an approach by multiple aircraft, such as that by a flight
formation. Some of the main issues concerned include
multiple target tracking and management of the target
identities. These topics are of interest in our future re-
search.

APPENDIX. FUZZY LOGIC

Generally, vagueness and imprecision exist in data/
information concerning real-world problems. Fuzzy
logic [15, 38], an extension of Boolean logic, was devel-
oped to deal with uncertainties associated with problems
from practical applications.
In classical set theory, a set has a crisp (sharp and

clear) boundary and it completely includes or excludes
an arbitrarily given element. On the other hand, in fuzzy
set theory, boundaries between sets of values need not
be distinctly defined. A fuzzy set expresses the degree
to which an element belongs to a set, where an element
can have gradual transition in status from “belongs to a
set” to “does not belong to a set.”
Let X be a space of objects and x be an arbitrary

element of X. For a classical set C, C � X, define a
characteristic function f : X 7! f0,1g by

f(x) =
½
0, x =2 C,
1, x 2 C:

Then C can be represented by a set of ordered pairs,

C0 = f(x,f(x)) j x 2 Xg: (3)

DEFINITION 1 Fuzzy sets and membership functions.
Let X be a space of objects which are generically
denoted by x. A fuzzy set F in X is defined as a set
of ordered pairs

F = f(x,¹F(x)) j x 2 Xg (4)

where ¹F : X 7! Y is known as the membership function
for F. The membership function maps each element
x of the input space (or universe of discourse) X to a
degree of membership (also known as membership value
or membership grade) ¹F(x) in the output space (or
membership space) Y. For each x 2 X, ¹F(x) 2 [0,1].
REMARK The definition of a fuzzy set is an extension
of the definition of a classical set. In Definition 1, if
Y = f0,1g, then F is reduced to a classical set and ¹F(¢)
is the characteristic function of F.

Fuzzy logic is a superset of standard Boolean logic.
There exist fuzzy logical operations for fuzzy sets that
correspond to Boolean logical operations for classical
sets. In the case when membership function values are
restricted to the set f0,1g, fuzzy logical operations and
Boolean logical operations are equivalent.

DEFINITION 2 Fuzzy complement.
A fuzzy complement operator is a continuous function
N : [0,1]! [0,1] that meets the basic axiomatic require-
ments:

N(0) = 1 and N(1) = 0 (boundary)

N(a)¸N(b) if a· b (monotonicity):
(5)

An optional requirement imposes involution on a fuzzy
complement:

N(N(a)) = a (involution) (6)

which guarantees that the double complement of a fuzzy
set is still the set itself.
The complement of a fuzzy set F is the fuzzy set F̄

(or :F, NOT F), whose membership function is related
to that of F by

¹F̄(x) =N(¹F(x)) (7)

with the fuzzy complement operator commonly defined
by N(a) = 1¡ a.
DEFINITION 3 T-norm.
A T-norm operator is a binary function T : [0,1]£
[0,1]! [0,1] that satisfies:

T(0,0) = 0, T(a,1) = T(1,a) = a (boundary)

T(a,b)· T(c,d) if a· c and b · d (monotonicity)

T(a,b) = T(b,a) (commutativity)

T(a,T(b,c)) = T(T(a,b),c) (associativity):

(8)

DEFINITION 4 T-conorm (or S-norm).
A T-conorm (or S-norm) operator is a binary function
S : [0,1]£ [0,1]! [0,1] satisfying:

S(1,1) = 1, S(0,a) = S(a,0) = a (boundary)

S(a,b)· S(c,d) if a· c and b · d (monotonicity)

S(a,b) = S(b,a) (commutativity)

S(a,S(b,c)) = S(S(a,b),c) (associativity):

(9)

DEFINITION 5 Fuzzy intersection (conjunction).
The intersection of two fuzzy sets F1 and F2 is a fuzzy
set F, written as F = F1 \F2 or F = F1 AND F2. F is
specified in general by a T-norm operator T : [0,1]£
[0,1]! [0,1], which aggregates the membership values
of F1 and F2 as

¹F(x) = T(¹F1 (x),¹F2 (x)): (10)

A frequently used T-norm operator is defined by T(a,b)
= min(a,b), the minimum of fa,bg (also denoted by
a^b).
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DEFINITION 6 Fuzzy union (disjunction).
The union of two fuzzy sets F1 and F2 is a fuzzy set F,
written as F = F1 [F2 or F = F1 OR F2. F is specified in
general by a T-conorm (or S-norm) operator S : [0,1]£
[0,1]! [0,1], which aggregates the membership values
of F1 and F2 as

¹F(x) = S(¹F1 (x),¹F2 (x)): (11)

A frequently used S-norm operator is defined by S(a,b)
= max(a,b), the maximum of fa,bg (also denoted by
a_b).
For an input vector x 2 X, a fuzzy inference process

utilizes a set of fuzzy rules to interpret the values of
x and assign appropriate values to an output vector
y 2 Y. Each rule is of the form “if S1 then S2,” or
equivalently, “S1! S2.” The if-part of the rule “S1” is
called the antecedent, while the then-part of the rule “S2”
is called the consequent. Each rule outputs a fuzzy set.
Aggregation of the output fuzzy sets for the rules yields
a single output fuzzy set. Defuzzification is carried
out on the resultant set to obtain the final desired
conclusion, in the form of a single number.

REFERENCES

[1] A. Aligawesa and K. L. Fetzer
Intent inference and conformance monitoring in air traffic
control.
Project Report, Flight Dynamics and Control/Hybrid Sys-
tems Laboratory, School of Aeronautics and Astronautics,
Purdue University, Apr. 2008.

[2] Y. Bar-Shalom, X.-R. Li and T. Kirubarajan
Estimation with Applications to Tracking and Navigation:
Theory, Algorithms, and Software.
New York: Wiley, 2001.

[3] B. Bell, E. Santos, Jr. and S. M. Brown
Making adversary decision modeling tractable with intent
inference and information fusion. In Proceedings of the 11th
Conference on Computer-Generated Forces and Behavior
Representation, Orlando, FL, May 7—9, 2002, 535—542.

[4] H. A. P. Blom and E. A. Bloem
Joint particle filtering of multiple maneuvering targets from
unassociated measurements.
Journal of Advances in Information Fusion, 1, 1 (July 2006),
15—34.

[5] H. A. P. Blom and E. A. Bloem
Bayesian tracking of two possibly unresolved maneuvering
targets.
IEEE Transactions on Aerospace and Electronic Systems, 43,
2 (Apr. 2007), 612—627.

[6] B. Chen and J. K. Tugnait
Tracking of multiple maneuvering targets in clutter using
IMM/JPDA filtering and fixed-lag smoothing.
Automatica, 37, 2 (Feb. 2001), 239—249.

[7] S.-B. Cho
Incorporating soft computing techniques into a probabilistic
intrusion detection system.
IEEE Transactions on Systems, Man, and Cybernetics–Part
C: Applications and Reviews, 32, 2 (May 2002), 154—160.

[8] J. P. Coyne
Bombology.
Air Force Magazine, 73, 6 (June 1990), 64—69.

[9] P. H. Foo, G. W. Ng, K. H. Ng and R. Yang
Application of intent inference for surveillance and confor-
mance monitoring to aid human cognition.
In Proceedings of the 10th International Conference on In-
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